
Implement
Lighthouse-CI
With your web development workflow

Ivan Kristianto
GDE Web and Performance
@ivankrisdotcom / ivan@ivankristianto.com

Performance is important!

95 92

We hate slow!

That’s it!

I am assigned to lead a project
● Redesign 3 sites and rewrite it from scratch
● Fortunately, the requirement need to use WordPress with Gutenberg

blocks
● The sites should be fast, for the end user and for the editor
● It has quite optimistic timeline
● It has features needs to be built on top of WordPress.

Core Issues

Traffic Drop = < $$$

Traffic drop 30%.
And the site owner lose
potential revenue each day!

��

Tangled by
Workflow and
Code Management
It takes ~15 days To do
minor change (ex: color,
font size, etc)

��

Performance Analysis

“This picture paints a
1000 words”

Current
Performance

Comparison with
Competitors
TTFB slowest,
FCP still slow,
And our Load Time is the
worst.

User Devices

From the last 6 months, 60%
visitors. But it’s declining
since previous 6 month by
15% compare to mobile.

Desktop
~60%

Browser Supports

From the last 6 months
majority of users use
Chrome by 52.2%, followed
by Edge (18.8%) and Safari
(11.1%).

Target

Define our Goals

Fast

ExtendableHighly
Customizable

Define our Goals

ExtendableHighly
Customizable

Fast

Indicator
Defined our desired goals:

1. Time To First Byte (TTFB). TTFB should occur within 0.5 second from the user
request.

2. First Contentful Paint (FCP). FCP should occur within 1 second of when the page
first starts loading.

3. Largest Contentful Paint (LCP). LCP should occur within 2.5 seconds of when the
page first starts loading.

Fast

https://bit.ly/2ZDJdZu

Performance Budget Fast

https://www.performancebudget.io

https://www.performancebudget.io

Core Web Vitals Fast

https://bit.ly/2ZDJdZu - Addy Osmani

https://bit.ly/2ZDJdZu

Approach & Strategy

Communication
Get the message to all the stakeholders, engineers and
marketing.

Communication

Stakeholders

MarketingEngineers

Desain UX & UI
Design UX & UI Approach

1. Mobile first, UX approach with mobile first could potentially minimize the
complexity of the site on mobile view.

2. Avoid hidden content, ex: avoid the use of unnecessary sliders or
tabbed content.

3. Avoid element overflow and long content

Design

Development Workflow
Create documentation of the workflow

Deploy

CodeTickets Automatic
Tests

Manual
Review QA Approved

Images
Requirement for images:

1. LazyLoad. Use native lazyLoad and fallback to JS lazyLoad.
2. Responsive. Images should use responsive sizes.
3. Compressed. Images should use gzip compression / brotli
4. Use CDN. Use 3rd party services for CDN.
5. Support WebP (if browser support).

Images

LazyLoad

Most of the images should
lazyLoad.

More:
https://web.dev/native-lazy-loading/

Images

https://web.dev/native-lazy-loading/
http://www.youtube.com/watch?v=ZBvvCdhLKdw

<!-- Let's load this in-viewport image normally -->

<!-- Let's lazy-load the rest of these images -->

<script>
 if ('loading' in HTMLImageElement.prototype) {
 const images = document.querySelectorAll("img.lazyload");
 images.forEach(img => {
 img.src = img.dataset.src;
 });
 } else {
 // Dynamically import the LazySizes library
 let script = document.createElement("script");
 script.async = true;
 script.src =
 "https://cdnjs.cloudflare.com/ajax/libs/lazysizes/4.1.8/lazysizes.min.js";
 document.body.appendChild(script);
 }
</script>

LazyLoad

Ship as native since
WordPress 5.5

WordPress Plugin:
https://wordpress.org/plugi
ns/native-lazyload/

Images

https://wordpress.org/plugins/native-lazyload/
https://wordpress.org/plugins/native-lazyload/

Responsive

Most images should
implement image srcset.

WordPress support this
natively

Images
<img

src="sample-1024x696.jpg"
width="1024"
height="696"
class="alignnone size-large lazyload"
srcset="
sample-300x204.jpg 300w,
sample-768x522.jpg 768w,
sample-1024x696.jpg 1024w

"
sizes="(max-width: 1024px) 100vw, 1024px"
alt="A meaningful sample image"
loading="lazy"

>

CSS
Requirements:
1. Visual Stability, All images should have dimension attributes (width & height).
2. Code Splitting, separated by viewports.
3. BEM (Block Element Modifiers), for code reusability.
4. Best Practices, membuat dokumentasi yang akan diterjemahkan menjadi linter rules

CSS

Visual Stability

All lazy load elements,
should have dimension
attributes (width & height)

CSS

https://docs.google.com/file/d/1K4FV5-J8Dc-xDTZC8li-RVT_RYpSbFYc/preview

Code Split

CSS File di pisah berdasarkan media
queries:
1. small.css
2. medium.css
3. large.css
Code splitting dilakukan secara
otomatis menggunakan webpack

CSS
<link rel="stylesheet"

media="screen and (min-width: 300px)"
href="small.css">

<link rel="stylesheet"
media="screen and (min-width: 768px)"
href="medium.css">

<link rel="stylesheet"
media="screen and (min-width: 1200px)"
href="large.css">

JavaScript
Our Approach in high level:
1. Code Splitting, and total size during first page load is max 160 kb
2. No JQuery, delete the use of jQuery on frontend
3. Vanilla JS, and only execute js when needed.
4. Async & Defer, all JS codes executed async and defer after document load
5. Best Practices, automate this with tests, linters rules.

JS

Code Split

JS files has multiple entries and
used when only needed.

Max size per file is 80 Kb, and will
throw warning when exceed.

// webpack config > entries
entries: {

 // JS files.
admin: './assets/js/admin/admin.js',
blocks: './assets/js/blocks/blocks.js',
frontend: './assets/js/frontend/frontend.js',
styleguide:

'./assets/js/styleguide/styleguide.js',
'blocks-editor':

'./includes/blocks/blocks-editor.js',

}

JS

3rd Party JavaScripts
Our approach

1. Limit 3rd party scripts, always refer to our performance budget.
2. Test & Monitoring, do test and monitoring for this 3rd party JS
3. Use when needed, most of the times, not every page need it.
4. All 3rd party scripts, load after window.onload event

JS

3rd Parties

1. Refer back Performance
Budget

2. From this list our exception is
“OneTrust” need high priority.

JS
{

"Google Tag Manager",
"Google Analytics",
"Lucky Orange",
"Adoric",
"Facebook Pixel",
"Survey Monkey",
"Aimtell",
"HotJar",
"Instana",
"OneTrust",

}

Automation

Development Workflow
Implement the automated tests

Deploy

CodeTickets Automatic
Tests

Manual
Review QA Approved

Automated
Tests
1. Run automated tests and

build with CI/CD
2. Run Lighthouse-CI for

automated performance
tests

Lighthouse CI
Run LHCI on Every Pull Request

Show
Score

Github
Actions

Pull
Request LHCI

Lighthouse CI Server

https://github.com/GoogleChrome/lighthouse-ci

https://github.com/GoogleChrome/lighthouse-ci

Implement LHCI

Options
1. Temporary Public Storage
2. Private CI Server:

a. Docker
b. Firebase
c. Heroku
d. etc.

Heroku

Setup LHCI on
Heroku

1. Install Heroku CLI
2. Run the scripts from CLI
3. Done

❯ LHCI="unique-app-name" \
&& heroku create $LHCI \
&& git clone https://git.heroku.com/$LHCI.git
lhciapp \
&& cd lhciapp \
&& heroku addons:create heroku-postgresql:hobby-dev

❯ curl
https://raw.githubusercontent.com/GoogleChrome/ligh
thouse-ci/master/docs/recipes/heroku-server/package
.json > package.json

❯ curl
https://raw.githubusercontent.com/GoogleChrome/ligh
thouse-ci/master/docs/recipes/heroku-server/server.
js > server.js

❯ git add --all && git commit -am "Initialize lhci"
&& git push origin master

❯ heroku ps:scale web=1 && heroku open

LHCI Server

Create LHCI
Project

1. Install LHCI CLI
2. Run lhci wizard
3. Store the credentials safely

❯ npm i -g @lhci/cli
❯ lhci wizard

? Which wizard do you want to run? New-project
? What is the URL of your LHCI server?
https://lhciserver-webfest.herokuapp.com/
? What would you like to name the project?
Twentytwentyone
? Where is the project's code hosted?
https://github.com/ivankristianto/twentytwentyone/
? What branch is considered the repo's trunk or
main branch? trunk

Created project twentytwentyone
(5bad793e-da68-45b2-a045-dbea42ce53bf)!

Use build token
f9c5a509-c539-4aa6-8ccb-f38a7c17ffab to add data.

Use admin token

UW4lyEHH7oiX58Cx2Jnuqh1wUkcITITVQc6RxFyp to manage

data. KEEP THIS SECRET!

https://lhciserver-webfest.herokuapp.com/
https://github.com/ivankristianto/twentytwentyone/

Lighthouse CI
GitHub App

https://github.com/apps/lighthouse-ci

Configure
Repo Secrets

GitHub Actions

name: Lighthouse CI
on: [push,pull_request]
jobs:
 lhci:
 name: Lighthouse
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - name: Use Node.js 12.x
 uses: actions/setup-node@v1
 with:
 node-version: 12.x
 - name: Install @lhci/cli and @wordpress/env
 run: |
 npm install -g @lhci/cli@0.5.x @wordpress/env
 - name: Run local server on port 8888
 run: |
 wp-env start
 - name: Run Lighthouse CI
 run: |
 lhci collect --url=http://localhost:8888 --numberOfRuns=1 --silent
 - name: Upload Artifact to Lighthouse CI Server
 run: |
 lhci upload
 env:
 LHCI_GITHUB_APP_TOKEN: ${{secrets.LHCI_GITHUB_APP_TOKEN}}
 LHCI_SERVER_BASE_URL: ${{secrets.LHCI_SERVER_BASE_URL}}
 LHCI_TOKEN: ${{secrets.LHCI_TOKEN}}
 - name: Assert Artifact
 run: |
 lhci assert

Let’s See How It Works!

Result

Performance First Development,
make the performance as the
highest priority in all decisions
made, and implement it as part of
the workflow.

A good web performance have a lot
positive outcomes.

Thank You!
Ivan Kristianto
GDE Web and Performance
@ivankrisdotcom / ivan@ivankristianto.com

