
Kotlin as Modern Language
to build REST Services

Deny Prasetyo

@Jasoet

http://images.yalantis.com/uploads/article/image/108/Kotlin.jpg

@Jasoet

> Deny Prasetyo

● 9+ years experience as a developer,
instructor, and community organizer

● Kotlin Language and Cloud Native
Technology Enthusiast

● Senior Software and Systems Engineer,
Gopay Indonesia

● Kotlin Indonesia and Cloud Native
Indonesia Community

What is Kotlin?
➔ Programming Language
➔ Multi-Platform: JVM, Android, JavaScript, and LLVM (Native for iOS, Linux,

Mac)
➔ 100% Java Compatible (JVM and Android)
➔ Android Official Language
➔ Transpile to JavaScript
➔ Compiled to Native using LLVM Compiler Infrastructure
➔ By JetBrains (Creator of Android Studio and Intellij IDEA)
➔ Framework and Tools Friendly (Use existing Frameworks/Tools)

@Jasoet

What is Not?
➔ Not a Java Killer!
➔ Not a new Platform!

Just a Language!

@Jasoet

Ecosystem

@Jasoet

➔ Use existing framework/tools (Java,
Android, Node.js, LLVM)

➔ Kotlin Indonesia => 13K FB Group and 8K
Telegram Group Member

➔ (30000+) Kotlin lang Slack users
(https://kotlin.link)

Learning Curve

@Jasoet

➔ Statically-typed. Object-oriented/Functional Paradigm.
➔ Kotlin and Java working side-by-side in single project.
➔ Kotlin allowing us to write concise and expressive code while maintaining

full compatibility with existing Java-based technology stacks and a
smooth learning curve.

Success Story

@Jasoet

What Kotlin offers!
➔ Null Safety

◆ Null are part of type system

➔ Mutability Protection
◆ Mutability notation is a requirement.
◆ You must choose val or var.

➔ The Magical Fun
◆ Normal Function
◆ Higher order function and Lambda
◆ Inline fun
◆ Function Literal with Receiver
◆ Extension Function (Kotlin’s white

Magic)

➔ Class and Object
◆ Class

@Jasoet

◆ Inheritance
◆ Data Class
◆ Object Notation (the real form)
◆ Companion Object
◆ Sealed Class
◆ Destructuring
◆ Enum Class

➔ Safety Belt
◆ `is` operator
◆ Smart Cast
◆ Unchecked Exception (No more

“Exception Driven Programming”)
◆ Type Alias

➔ Coroutine

Null Safety

@Jasoet

Working with Null

● Safe accessor: [?]
● Elvis operator: [?:]

@Jasoet

Mutability Protection

➔ You must choose val or var.
➔ “val a: Int” = “final int a”
➔ The compiler is your friend!
➔ Use var for something that will vary with time.
➔ Use val for a value that won’t change.
➔ Always default to val until something needs to be made into var.

Using “final” / “val” :
■ clearly communicates your intent
■ allows the compiler and virtual machine to perform minor optimizations
■ clearly flags items which are simpler in behaviour - final says, "If you are looking for

complexity, you won't find it here."

@Jasoet

Extension Function

@Jasoet

Data Class and Destructuring

@Jasoet

Static Typing + Smart Cast

Java

Kotlin

@Jasoet

Coroutine

In the beginning

There are Process and Thread

● Processes are often seen as synonymous with programs or applications.
● Single application may in fact be a set of cooperating processes.
● A process has a self-contained execution environment. A process generally

has a complete, private set of basic run-time resources; in particular, each
process has its own memory space.

● Threads are sometimes called lightweight processes.
● Creating new thread requires fewer resources than creating a new process.
● Threads exist within a process — every process has at least one.
● Threads share the process's resources, including memory and open files.
● This makes for efficient, but potentially problematic, communication.

Process Builder

Creating Thread

Thread Pool

● Java Thread pool represents a group of worker threads that are waiting for the job and reuse many
times.

● Better performance It saves time because there is no need to create new thread.
● Real Time Usage It is used in Servlet, JSP and Spark Java where container creates a thread pool to

process the request.

➔ Executors.newFixedThreadPool(5)
➔ Executors.newCachedThreadPool()
➔ Executors.newSingleThreadExecutor()

Using Thread Pool

Modern Solutions

Future / Promise

● A Future represents the pending result of an asynchronous computation.
● It offers a method — get — that returns the result of the computation when it's

done.
● Can be chained using CompletableFuture class.
● Promise is similar with Future.
● Kovenant is Promise Library for Kotlin http://kovenant.komponents.nl/

http://kovenant.komponents.nl/

Using Future

Using Promise

Rx Java

● Rx a library for composing asynchronous and event-based programs by using
observable sequences.

● To use RxJava you create Observables (which emit data items), transform
those Observables in various ways to get the precise data items that interest
you (by using Observable operators), and then observe and react to these
sequences of interesting items (by implementing Observers or Subscribers and
then subscribing them to the resulting transformed Observables).

Rx Java Example

The Problem

The Callback

Kotlin Coroutine

Using Kotlin Coroutine

Features

● Regular Loops

● Regular Exception Handling

● Regular High Level Operator
○ let, apply, forEach, filter, map, use, etc

Library vs Language

● https://kotlinlang.org/docs/reference/coroutines-overview.html
● Kotlin language only has suspend keyword.

○ Transform suspend function to callback.
○ Compiles code to State Machine.
○ Stdlib has Continuation and CoroutineContext.

● Everything else is in library.
○ It includes launch/join, async/await, runBlocking, etc
○ We were using kotlinx.coroutines library.
○ https://github.com/Kotlin/kotlinx.coroutines

https://github.com/Kotlin/kotlinx.coroutines

REST Services with Kotlin

Options

● Spring Boot (https://start.spring.io/)
● Eclipse Vertx (https://vertx.io/)
● JetBrains Ktor (https://ktor.io)
● Quarkus (https://quarkus.io/)
● Micronaut (https://micronaut.io/)

Ktor

● Lightweight
● Asynchronous with Coroutine
● Developed by JetBrains
● 100% Kotlin Awesomeness
● Collection of Features
● Multiple Engine Support (Jetty, Netty, Tomcat, Coroutine IO)

https://github.com/jasoet

Thank You

